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I. INTRODUCTION

The addition of forebody strakes to aircraft
configurations has shown significant improvement
in aircraft performance at moderate-to-high
angles-of-attack for subsonic and transonic
speeds. The principle reason for improvement is a
significant increase in usable lift  due to strake
induced vortex effects on the basic wing lift. The
strake leading edge vortex interacts with the
boundary layer over the wing upper surface and,
consequently. delays separation at high
angles-of-attack. The delayed separation gives
higher trim angles-of-attack and thus higher trim
lift or maneuverability. Strake geometry is of
secondary importance but still must be considered
in design because of a possible adverse effect in
pitch stability at high angles of attack. Several
papers have documented forebody strake effects at
subsonic and ! transonic' speeds, but does this effect
carry over to supersonic speeds?

This research project investigates the effect of
strakes on missile type body-wing-tail
configurations at supersonic speeds by (1)
conducting a literature survey of existing data
and design methods for strakes applicable to missile
configurations and (2) analyzing a set of wind
tunnel data obtained by MICOM on a body-wing-
tail missile with strakes at Mach 2.0. The literature
survey was accomplished using NASA and DOD
computer search facilities plus any additional
known references. Findings from the literature
survey, as well as any strake design information, are
presented. The experimental data used for Mach
2.0 analysis is part of a wind tunnel test conducted
by MICOM at AEDC to study advanced
interceptor missile configurations. The primary
question to answer from this research is;  Can
strakes be used to improve high angle-of-attack
performance of body-wing-tail missile
configurations at supersonic speeds?

II. LITERATURE SURVEY

A literature survey was conducted to review
articles and reports dealing with the effects of wing
strakes on a body-wing-tail configuration's
maneuverability. The literature was gathered by
using a library search routine of both NASA and
DOD material based on the key words, strake, and
high angle-of-attack. Of the material reviewed,

approximately 909 dealt with aircraft wing-strake
configurations rather than actual missile
configurations. It is assumed that a missile wing-
strake would respond in the same manner.

A. Findings

(1) Wing configurations that benefit most by
the addition of the strake are those with
low-to-moderate sweep angles (<45°). Above 45°,
the effects of strakes decrease correspondingto loss
of interference lift. This occurs because wings
having leading edge sweep angles greater than 45°
develop high levels of vortex lift and, therefore do
not require the additional vortex created by a strake
(Survey Bibliography 13).

(2) Strakes were found to delay conventional
stall by increasing maximum usable lift and
decreasing lift-dependent drag at high incidences
for subsonic and transoaic speeds.

(3) For the transonic regions, strake
addition yielded a decrease in buffet intensity.

(4) At supersonic Mach numbers, strake
applications reduced wave drag and trimmed-
induced drag.

(5) The combined effects of (1, 2, and 3) lead
to a configuration that enhances the high angle-of-
attack maneuver aerodynamics and does not, in
doing so, detract from the low angle-of-attack
(<8°-10°) portion of a mission.

(6) Increase in L/D ratios, dueto liftincrease
at low speed and drag decrease at supersonic speed,
was also a noticeable effect of strake addition.

B. Strake Design

In designing strakes, their performance is
based on the angle-of-attack at which the vortex
breakdown crosses the wing trailing edge (*BD-
TE) and the rate at which the breakdown progresses
forward over the wing once ®BD-TE is reached. To
increase strake efficiency, the designer wants to
increase ®BD-TE and reduce the rate that the
vortex breakdown moves forward. @BD-TE is
increased by increasing strake area and/or
increasing strake slenderness. The Gothic strake
planform was found to be better than the delta
shape because the vortex core breaks up farther
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into the wing pressure field, but strake shape is
considered of secondary importance until nearing
Cima. The primary or most significant geometric
parameter appears to be the area of the strake. Lift
created by the strake is primarily dependent upon
the area of the strake-induced vortex, which is
defined as the exposed strake area plus the wing
platform area that falls within the projected strake
exposed area A (Figure 1 and Survey
Bibliography 3).

1. EXPERIMENTAL DATA

Data used for these analyses were obtained as
part of a MICOM sponsored wind tunnel test
conducted at AEDC on advanced interceptor
missile designs. This applied research test program
investigated missile designs which hopefully would
exhibit improved performance for a typical
ground-to-air interceptor. Three basic designs were
considered, which are modifications of a typical
body-tail configuration with tail controls. The three
designs considered (1) planar folding wing, (2)
folding wrap-around wing, and (3) added wing
strakes. Only the wing strake data is analyzed here.

A. Apparatus and Test

This test was conducted in the AEDC VKF-A
tacihty. Tunnel A is a continuous flow, closed loop
wind tunnel capable of Mach numbers from 1.5 to
5.5. The test section is 40 by 40 inches. Angles-of-
attack for this test ranged from -4 to +20, and
control deflections were 0, -5, -10, and -15 for
certain configurations; however, the strake runs
were made with zero control deflection only and
Mach 2.0 only. Table | presents the nominal test
conditions.

B. Models and Datsa

An existing wind tunnel model was
modified for these tests. Midsection wings and
strakes were added to a basic body-tail
configuration, as depicted in Figure 2. Geometric
dimensions for the basic body-tail configurations
are shown in Figure 3. Strake geometry and
dimensions are shown in Figure 4.

Two geometric parameters were used in
designing strakes for these tests: (1) the ratio of
strake area to wing area and (2) the strake leading
edge sweep-back angle. These two parameters are
illustrated in Figure 5. Strake S: was not tested.
Complete geometry of the body, strakes, wings, and

tail fins are tabulated in Tables 2 through §.
Nomenclature used for model components are
presented in Table 6. The analysis in this report is
concerned only with W (straight wing) and strakes
S+ and S: in conjunction with the basic body-tail
(B/T)).

Six-component main balance and three-
component fin balance data were taken. Since
differences between runs are of primary importance
to this analysis, a thorough review of tunnel flow
angularity and model aero bias was performed. It
was concluded that flow angularity was small, as
illustrated in Figures 6 and 7, and thus any non-zero
stability coefficients at zero angle-of-attack would
be considered as an aero bias. Since the wind tunnel
mode!l is intended to be symmetrical, any
identifiable aero bias was shifted out of the
coefficient data.

IV. RESULTS AND DISCUSSION

The effect of strakes on wing lift, tail lift, hinge
moment, oot bending moment, and body-wing-
tail stability is examined. Six-component main
balance data is used for the wing and body-wing-
tail study, and three-component fin balance data is
used for fin-alone study. Body buildup runs were
made to enable component analysis. Any biasin the
coefficient data was shifted to zero, assuming no
flow angularity. Flow angularity was examined, as
illustrated in Figures 6 and 7, and found to be
insignificant.

A. Wings

The effect of strakes on wing plus wing-body
interference lift is illustrated in Figures 8, 9, and 10.
During the wind tunnel test, runs were made with
body-alone and body-wing as well as body-wing-
strake. Body-alone data is substracted from body-
wing and body-wing-strake data to determine the
strake effect on wings. These data indicate that the
strakes tested do not significantly influence the
basic wing lift for angles-of-attack up to 20°.
Perhaps the strake effect would be more
pronounced near the stall point; however, test
section restrictions limited the maximum angle-of-
attack for this test. Roll angle effects on strakes are
also insignificant. as illustrated in Figure 9. The
ratio of wing lift with strakes to that without strakes
(Figure 10) gives a better picture of the strake effect.
It is surprising to find that the percent increase in
wing-strake lift is approximately the same for both
strakes (S,and S.) near zero angle-of-attack. Strake
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S, has twice the area of S, but it does not give twice
the increase in lift. At higher angles-of-attack (10°
to 20°), S. the larger strake, does yield
approximately twice the effect of strake S. The
same holds true for both 0° and 45° roll angles.
Another observation from Figure 10 is that the
strake effect is greatest near zero angle-of-attack
‘about 6 to 7 percent) and reduces to about half that
at 20°. This phenomenon seems contrary to the
expected strake effect. Again, it should be
remembered that the configuration and test
conditions here are thin-wing missile type shapes at
Mach 2.0 and might not be expected to yield the
same results as airplane configurations at subsonic
and transonic speeds.

B. Tail Fins

The effect of strakes on tail fin forces and
moments is illustrated in Figures 11 through 15,
Three-component fin balances were used to
measure fin-alone loads plus upwash effects from
the body to the fin. Runs were made with body-
wing-tail and body-wing-strake-tail to isolate the
effect of strakes on tail fins. The strake effect on
tails is in the form of a changed downwash flow
field from the wing to the tails. If the wing lift is
increased, then a stronger downwash field exists,
which results in reduced tail fin stabilizing
effectiveness. It should be remembered that these
test were made with in-line wings and tails.

Fin surface alignment is illustrated in Figure
11. As observed, fins | and 3 measure practically no
load and fins 2 and 4 measure practically the same

load, indicating good model and componen!
alignments. Consequently, when analyzing @ 0°
data, only fin 2 or 4 data need be used. For § 45°
analysis, fins 1 and 2 will be used.

As can be observed in Figures 12, 13, and 14,
the effect of strakes on tail fins is quite small for the
conditions tested. The same is generally true for
0=45° as shown in Figure 15. These results indicate
that the vorticity or downwash field from the wings
to the tails is not changed significantly with added
wing strakes. This is not surprising in light of the
wing-strake analysis.

C. Total Configuration

Only strake S; was tested with the full
configuration, due to limited tunnel time. Strake S,
was selected. as opposed to S, or S;, because it was
expected to give the greatest change in stability
characteristics. The results are shown in Figures 16
through 18. Basically, the strakes have a small effect
at 9=0° or 45° for the conditions tested. Aswith the
wing-alone results, strake effects on total
configuration are more pronounced at small
angles-of-attack and decrease significantly up to
20°. The effect on Lift/Drag ratio (L/D) is also
small, as shown in Figure 19. A very slight increase
in L/ D is obtained in the 4° through 10° angle-of-
attack range, but not significant enough to warrant
the increased weight. Figure 20 presents the L/ D at
Mach numbers 2, 3, and 4, without strakes. 1t is
expected that the strake effects will be
quantitatively the same throughout the Mach2to 4
range for the configurations tested.

V. CONCLUSIONS

1. The addition of forebody strakes to a missile type body-wing-tail configuration producesonly a
slight increase in wing lift (less than 5%) at Mach 2.0 and angjes-of-attack up to 200, for the

configurations tested.

2. Tail fin loading is practically unaffected by the addition of strakes for the shapes and conditions

tested.

3. Lift/Drag ratios show no significant improvement in missile performance, due to added strakes,

at Mach 2.0.

4. Body roll angle does not change the strake effect appreciably.




TABLE 1. NOMINAL TEST CONDITIONS

M PT, psia TT R Q, psia P, psia RE/ft x 107
2.0 10.3 560 3.7 1.32 2.5
3.0 16.3 545 2.8 0.44 2.5
1.0 30.1 580 22 0.20 2.5

TABLE 2. BODY GEOMETRY (B))

Nose Bluntness 0.020
Overall Length 48.832
Nose Length (Ogive-Conical Frustrum) 12.573
Reference Diameter 3.7s
Reference Area (in.2) 11.045
Moment Reference Center 0.0
Tail Fin Pivot Station 45.705
Boat-tail Length 2.110
Base Diameter 3.445
Wing L.E. Station 24.375

¥

H NOTES: All stations and lengths are relative to ogive theoretical tip ((.020 forward of actual nose).

-,, All dimensions in inches unless otherwise noted.
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TABLE 3. STRAKE GEOMETRY (S,)

S S:
Exposed Semi-Span 1.4824 1.336
Root Chord 2.028 4.5
Tip Chord 0 0
Area, Single Pane! Exposed (in.?) 1.503 3.006
L..E. Sweepback Angle (deg) 60 75
T.E. Sweepback Angle (deg) 20 20
Station of I..E. Root Chord 22.347 19.875
Aspect Ratio 2.924 1.188
Taper Ratio 0 0
Strake Thickness (in.) 0.100 0.100

NOTE: All dimensions in inches unless otherwise noted.

TABLE 4. WING GEOMETRY (W,)

w,;
W, Projected

Exposed Semi-Span 45 2.794
Root Chord 7.5 7.5
Tip Chord 5.862 6.483
Area, Single Panel Exposed (in.2) 30.065 19.572
Leading Edge Sweepback Angle (deg) 20 20
Trailing Edge Sweepback Angle (deg) 0 0
Station of Leading Edge Root Chord 24.375 24.375
Aspect Ratio 1.347 0.80
Taper Ratio 0.782 0.864
P.oot Chord Thickness Ratio 0.050 0.040
Tip Chord Thickness Ratio 0.050 0.040

NOTE: All dimensions in inches unless otherwise noted.

S

0.9446

3.1819

1.503

75

20

21.193

1.188

0.100




TABLE 5. TAIL GEOMETRY (T))

: Exposed Scemi-Span 2.079 i
; Root Chord 6.791
Exposed Semi-Span (Includes 0.036-in. Gap) 2115 1
Root Chord (Includes 0.036-in. Gap Extension to Surface) 6.861
Tip Chord 2.716
Area, Single Panel Exposed (in.2) 9.883
Leading Edge Sweepback Angle (deg) 62.964
Trailing Edge Sweepback Angle (deg) 0
Station of L..E. Root Chord (Theoretical Extension to Surface) 41.704
Taper Ratio 0.40
Root Chord Thickness Ratio 0.069
3 i Tip Chord Thickness Ration 0.076
f Station of Pivot Point 45.705
Reference Area 11.045
Reference Length 3.75
Reference Hinge Line 1/4 MAC
Aspect Ratio 0.875

NOTE: All dimensions in inches unless otherwise noted.




TABLE6. CONFIGURATION NOMENCLATURE

Body Alone (B))

Tail Fins (T))

Straight Wing (W)

Curved Wing (W>)

Simulated Straight Wing Folded (F))
Simulated Curved Wing Folded (F»)

Strakes 1, 2 or 3 (S,)

REFERENCES

1. Killough, T. L. and W.D. Washington, “Pretest Report for an Improved Army Interceptor Design,”
MICOM Internal Technical Note T-79-16, April 1979.

2. Chafin, J. M. and J. C. Sung, “User’s Guide for Advanced Interceptor Design (ADVINT)
Aerodynamic Data Base,” New Technology. Inc., TR1020, September 1979,

K} Best. J. T., Jr., “Static Force Test on an Improved Army Interceptor Design at Mach Numbers 2.0 to
4.0." AEDC-TSR-79-V41, August 1979.
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SECTION A—A

Figure 1. Definition of effective strake area for a simple wing-body configuration.

Figure 2. Typical Configuration.
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STRAKE S,
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300 700 / '
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T

4.500

.

INTERSECT LINE, W,
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(NOT TESTED) o {
150
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-
\N -
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SECTION A-A SECTTION B-B
(TYP ALL STPAKES)

(TYP ALL STRAKES)

Figure 4. Strake dimensions (inches),
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—
Area Span Leading Root
Ratio | Ratio Edge Chord
to to Sweepback | Ratio .
Strake Wing Wing Angle Wing
) (%) (%) (deg) (%)
1 5 32.9 60 27.0
10 29.7 75 60.0
3 5 21.0 75 42.4

Figure 5 Strake size relative 1o wing 1 W)

{




.

Figure 6. Flow angularity (M_,
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Figure 7. Flow angularity (M, = 3).
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Figure 8 Effect of strakes on wing plus wing-body interference (9 =0°)
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Figure 9. Effect of strakes on wing plus wing-body interference (¢ = 45°).
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Figure 10. Normal force ratio (wing with strake/wing without strake).
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Figure 11. Fin normal force (all fins).
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Figure 13. Effect of strake S2 on fin hinge moment.
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Figure 14. Effect of strake S2 on fin root bending moment.
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Figure 15. Strake S, effect on fin normal force at ¢ = 45°.
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NONMENCLATURE

Reference area. body cross section

Ared allected by strake-induced vortex

Fin reference area, body cross section

Total angle-of-attack, missile axes-DEG

Fin 2 bending-moment coefficient, bending moment, Q AF D
Fin 2 hinge-moment coefficient, hinge moment Q AF D
Maximum lift coefficient

Normal force coefficient, missile axes, normal force; Q A
Normal force coefficient, body axes, normal force; Q A
Fin normal force coefficient for fin X. fin axes, normal force; Q AF
Incremental normal force coefficient

Reference diameter, cylinder

Lift/drag ratio

Free-stream Mach number

Free-stream static pressure, psia

Roll angle, deg

Tunnel stilling chamber pressure, psia

Free-stream dynamic pressure, psia

Free-stream unit Reynolds number, fi-!

Tunnel stilling chamber temperature, °R

Wing plus interference

Wing plus strake plus interference

Center-of-pressure location, from model nose

Angle-of-attack at which strake vortex breakdown crosses the wing trailing edge
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